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This work compares several models for fluid flow through micropillar arrays to numerical simulations
and uses them to optimize pillar dimensions for maximum fluid flow in a heat pipe application. Micro-
pillar arrays are important for controlling capillary flow in microfluidic devices, and array permeability is
a key parameter in determining fluid flow rate. Several permeability models are considered, including the
Brinkman equation, numerical simulations, inverse reciprocal sums of a cylinder bank and open flow over
a flat plate, and an analytical solution developed by the authors derived from a 2-dimensional velocity
profile with appropriately varying boundary conditions. The comparison seeks to identify the models that
are reliable over a wide range of porosities yet flexible enough to accommodate new pillar configurations.
Numerical simulations of pillar permeability are the most desirable due to their accuracy. For pillars
arranged in a square pattern, the 2-D analytical solution proposed in this study performs well at short
pillar heights while the Brinkman equation is more accurate at tall pillar heights. Therefore, a hybrid
model is formulated that uses the 2-D solution for h/d 6 5 and the Brinkman model for h/d > 5. The 2-
D solution, the Brinkman equation using specifically the permeability derived by Tamayol and Bahrami
(2009), and numerical simulations are easily adapted to alternative pillar arrangements. A comparison
of these models for pillars arranged in a rectangular pattern demonstrated that the authors’ proposed
solution is an excellent match to numerical results. These findings are applied to capillary fluid flow in
heat pipes to explore the effects of pillar spacing, diameter, and height on the maximum fluid flow rate
through the wick. At a given height aspect ratio, there is an optimum pillar spacing that balances the vis-
cous losses and driving capillary pressure such that the flow rate reaches a maximum. In addition, the
flow rate is increased by increasing pillar height if the pillar spacing is maintained at the corresponding
optimum point.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Microscale pillar arrays have received extensive attention due
to their applicability to a wide range of technologies. Lab-on-a-chip
systems have used pillar arrays for high-performance liquid chro-
matography (de Beeck et al., 2012; Song et al., 2012), dielectropho-
resis (Cui and Lim, 2009), and isolating cancer cells (Nagrath et al.,
2007; Sheng et al., 2012). Thermal management is another area of
interest, where pillars have recently been studied for use in a flat
plate heat pipe (Lips et al., 2010; Nam et al., 2010; Lefevre et al.,
2012). One of the key parameters of interest for these technologies
is the macroscopic rate of fluid flow through the array. The flow
rate is dictated by the balance of the permeability and capillary
forces of the pillar array. Small pore radii result in large driving
capillary pressures but decrease permeabilities. Therefore, the
ability to accurately predict the permeabilities of pillar arrays is
crucial to their design and utilization.

Sangani and Acrivos (1982) studied the viscous permeability of
square and hexagonal cylinder arrays at high and low porosity lim-
its. Drummond and Tahir (1984) modeled flow around long fibers
using a cell approach to find permeabilities at high porosities.
Gebart (1992) used the lubrication approximation for transverse
flow through square and hexagonal cylinder arrays to find an
expression for the permeability at low porosities. Yazdchi et al.
(2011) compiled a summary of cylinder array permeability models
and compared them to finite element simulations, then created a
hybrid equation valid for all porosities based on Gebart (1992)
and Drummond and Tahir (1984). Yazdchi et al. (2012) later
extended the finite element simulations to investigate random
cylinder arrays. Tamayol and Bahrami (2009) and Zhang et al.
(2010) used cell approaches to model actual pillar arrays as
opposed to long cylinder arrays. Xiao and Wang (2011) and Byon
and Kim (2011) used the Brinkman equation for flow through
porous media to find an analytical solution for permeability.
Tamayol et al. (2013) calculated the pressure drop for flow through
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Fig. 1. Micropillar unit cell with geometric parameters. Fluid flow is in the x-
direction.
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a microchannel filled with a pillar array. Their method used the
Brinkman equation and resulted in a hyperbolic solution. Finally,
Srivastava et al. (2010) used numerical simulations to develop a
predictive equation for the volumetric flow rate of liquid through
a limited range of pillar geometries, and Ranjan et al. (2012) used
numerical simulations to develop correlations for pillar array per-
meability as a function of porosity for different pillar shapes.

These models have yet to be compared side-by-side. Srivastava
et al. (2010), Ranjan et al. (2012), and Yazdchi et al. (2011) demon-
strated the use of state-of-the-art numerical simulations which
give exact predictions of pillar systems. In addition, the models
of cylinder banks by Gebart (1992), Drummond and Tahir (1984),
and Sangani and Acrivos (1982) are excellent analytical solutions
for the porosity regimes in which they were developed. Alterna-
tively, Tamayol and Bahrami (2009) and Zhang et al. (2010) pro-
posed approximate analytical solutions which are more easily
manipulated to reflect changes in pillar geometry. The design of
micropillar wicks requires a robust model that applies to all poros-
ities, yet is flexible enough to allow rapid testing of new ideas. This
study seeks to identify such a model from the current approaches.

Since the permeability of a pillar array is solely a function of pil-
lar geometry, researchers can customize flow rate predictions to
their specific application with the capillary pressure drop. Some
applications require fluid to move as a liquid propagation front,
others as a continuous flow. Liquid front propagation technologies
have pressure drops that relate to surface energies and dynamic
meniscus shapes (Ishino et al., 2007; Xiao et al., 2010; Xiao and
Wang, 2011). Continuous flow technologies have pressure drops
that rely primarily on the effects of pillar geometry on meniscus
shape (Peterson, 1994; Lips et al., 2010; Ranjan et al., 2012). Here
we are interested in the particular application of flat plate heat
pipes (FPHP) with microstructured wicks for thermal management.

Heat pipes are cooling devices that utilize passive capillary fluid
flow through internal wicking structures to remove heat via a
phase change process in a closed system. Wang and Bar-Cohen
(2007) concentrated on the need for on-chip cooling technologies
to combat hot spots on silicon chips. Therefore, small size and
uncomplicated operation is desirable for electronic cooling. Micro-
pillar arrays have the potential to contribute in this area, but the
majority of recent modeling work has focused on liquid front prop-
agation technologies. Lips et al. (2010) characterized the liquid–va-
por interface of fluid flow through 2-D wicking structures in FPHP
with confocal microscopy, and Lefevre et al. (2012) expanded the
work to include meniscus curvature measurements along the
length of the heat pipe. One of their wicking structures consisted
of rectangular micropillars arranged in a square pattern. Sharratt
et al. (2012) investigated the phase change heat transfer perfor-
mance of copper micropillars arranged in several different geomet-
ric designs. We seek to optimize pillar array dimensions to achieve
maximum fluid flow through a micropillar wick for heat pipe
applications.
2. Fluid flow models

Imagine an array of pillars with diameter d, height h, edge-to-
edge distance in the y-direction w, edge-to-edge distance in the
x-direction s, and center-to-center distance in the x-direction
l = w + d (Fig. 1). For a square pattern, w = s. Fluid flow occurs in
the x-direction, and the liquid interface at h is assumed to be flat.
A few recent studies have included the effects of meniscus shape
on permeability (Xiao et al., 2010; Xiao and Wang, 2011; Byon
and Kim, 2011), but the interface was kept flat in this study to com-
pare across a broader range of modeling work. This study will only
consider an array unbounded by macroscopic sidewalls, but
Vangelooven and Desmet (2010) have pointed out that the side-
walls of a bounded array must be carefully placed to avoid discrep-
ancies between the bulk velocity and the edge velocity.

If the pressure gradient is assumed to be constant and is applied
only in the x-direction, the Darcy fluid flow model states that the
superficial fluid velocity U is related to the pressure gradient across
the system dP/dx such that

U ¼ � dP
dx

K
l
; ð1Þ

where K is the sample permeability and l is the fluid viscosity. The
permeability is commonly non-dimensionalized by the pillar diam-
eter, such that K⁄ = K/d2. Thus, calculating the mass flow rate
through a micropillar array requires knowledge of the dimension-
less permeability.

2.1. Cylinder bank and flat plate combination

One approach to calculating the permeability through a micro-
pillar array is to combine the permeability of an unbounded cylin-
der bank with the permeability of a flat plate by assuming a
constant superficial velocity through the array and utilizing the
fact that total pressure drop is equal to the sum of the individual
component pressure drops:

U ¼ � dPcyl

dx

� �
Kcyl

l
¼ � dPplate

dx

� �
Kplate

l
ð2Þ

dPtotal

dx

� �
¼ dPcyl

dx

� �
þ dPplate

dx

� �
: ð3Þ

Solving Eq. (2) and (3) simultaneously gives

K�total ¼
1

K�cyl
þ 1

K�plate

 !�1

; ð4Þ

which weights each individual permeability such that the total per-
meability automatically reflects the dominance of either the flat
plate or cylinder bank characteristics of the array. The permeability
of a flat plate is derived from steady, laminar flow driven by a con-
stant pressure gradient and having no-slip and free surface bound-
ary conditions at z = 0 and z = h, respectively (Deen, 1998):

Kplate ¼
1
3

h2�: ð5Þ

The 2-dimensional porosity, � (Eq. (6)), accounts for the fact that Eq.
(1) refers to superficial velocity.

� ¼ 1� p
4

d2

l2 : ð6Þ

Since d is the parameter chosen for non-dimensionalization, Eq. (7)
gives the final result for K�plate even though d does not have a direct
physical meaning for a plate without pillars.
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K�plate ¼
1
3

h
d

� �2

�: ð7Þ

The permeability of a square cylinder bank (also referred to as a
periodic fibrous porous media in the literature) has been calculated
by several researchers using a variety of techniques. Yazdchi et al.
(2011) provided a synopsis of the most well-known models and
their methods. His finite element model matched that of Gebart
(1992) at low porosities and those of Drummond and Tahir
(1984) and Sangani and Acrivos (1982) at high porosities. In addi-
tion, Shou et al. (2011) recently published another model for the
permeability of fibrous porous media when � > 0.7 that also
matched that of Yazdchi et al. (2011).The non-dimensional perme-
ability K�G;cyl given by Gebart (1992) is

K�G;cyl ¼
4

9p
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �c

1� �

r
� 1

 !5=2

; ð8Þ

where �c = 1 � p/4. The permeability by Drummond and Tahir
(1984) K�D;cyl in terms of solid fraction / is

K�D;cyl ¼
1

32/
ln

1
/

� �
� 1:476þ 2/� 0:796/2

1þ 0:489/� 1:605/2

 !
; ð9Þ

where / = 1 � �. Yazdchi et al. (2011) proposed a combination of
these two models that is valid for all porosities, given in Eqs.
(10)–(12):

K�Y ;cyl ¼ K�G2 þ K�D;cyl � K�G2

� �
mð�Þ; ð10Þ

K�G2 ¼
K�G;cyl

1þ 0:336ð�� �cÞ
; ð11Þ

mð�Þ ¼
1þ tanh ���h

�t

� �
2

; ð12Þ

where �h = 0.75 and �t = 0.037.
Finally, Tamayol and Bahrami (2009) assumed a parabolic

velocity profile for fluid flow in fibrous porous media with velocity
varying only in the y-direction. The fiber array was split into unit
cells, and the velocity at the cell boundaries varied linearly from
zero at the fiber surface to a maximum value in the middle of
the cell. The maximum value depended linearly upon the porosity
of the entire fiber array. The resulting equation for dimensionless
permeability through a square array of fibers is

K�T;cyl¼
18þ12ðg�1Þffiffiffigp ð1�gÞ2

þ
18

ffiffiffigp arctan 1ffiffiffiffiffiffiffi
g�1
p
� �

þp=2
� �
ðg�1Þ5=2 þ

12
ffiffiffigp �1

	 

g ffiffiffigp 2�gð�Þ

2

� �8>><
>>:

9>>=
>>;

�1

;

ð13Þ

where g is related to the solid fraction / by the equation g = p/(4/).
g(�) contributes to the border velocity and is given by

gð�Þ ¼ 1:274�� 0:274: ð14Þ

Eq. (13) can also be written in terms of separate x- and y-direction
pillar spacings, such that the pillars are arranged in rectangular pat-
terns. Using the relationship S = s + d, the result of this distinction is
Eq. (15):

K�T;cyl ¼
18d3 þ 12dðS2 � d2Þ

ðd2 � l2Þ
2
S

þ
18d4l2 arctan dffiffiffiffiffiffiffiffiffi

l2�d2
p
� �

þ p=2
� �

ðl2 � d2Þ
5=2

S

8>><
>>:

þ12ðS� dÞd2

l2S

2� gð�Þ
2

� �)�1

: ð15Þ
Using Eq. (4) to combine the dimensionless permeabilities proposed
by either Yazdchi et al. (2011) or Tamayol and Bahrami (2009) with
the permeability of a flat plate gives two different models for the to-
tal permeability of a micropillar array: K�Y ;total and K�T;total.

2.2. Brinkman equation

Another method of modeling fluid flow through micropillar ar-
rays is to use the 1-D form of the Brinkman equation. The Brink-
man equation is a modified form of the Navier–Stokes equation
that accounts for the permeability of a porous media:

l
d2u

dz2 � �
dP
dx
� la2�u ¼ 0; ð16Þ

where 1/a2 is equal to the permeability of an infinite cylinder bank,
generally selected from literature. This permeability must be de-
rived from a cylinder bank arranged in the same pattern and subject
to the same flow conditions as the desired micropillar system. This
presents a challenge for non-standard pillar configurations since the
majority of researchers have only studied square or hexagonal ar-
rays. Xiao et al. (2010) used the permeability of Sangani and Acrivos
(1982) in their work, but this study uses that of Yazdchi et al. (2011)
since it is applicable to all porosities and has been validated against
Sangani and Acrivos (1982) and others. Xiao et al. (2010) solved the
Brinkman equation for a square micropillar array, resulting in the
following velocity profile:

u ¼ Aea
ffiffi
�
p

z þ Be�a
ffiffi
�
p

z � 1
a2l

dP
dx
; ð17Þ

A ¼ dP
dx

expð�ah
ffiffiffi
�
p
Þ

a2l exp ah
ffiffiffi
�
p	 

þ exp �ah

ffiffiffi
�
p	 
� � ; ð18Þ

B ¼ dP
dx

exp ah
ffiffiffi
�
p	 


a2l exp ah
ffiffiffi
�
p	 

þ exp �ah

ffiffiffi
�
p	 
� � : ð19Þ

Integrating Eq. (17) from 0 to h gives the average fluid velocity and
subsequently the dimensionless permeability as defined by Eq. (1),
which is

K�B ¼
1

a2d2 þ
l

� dP
dx d2h

A
a
ffiffiffi
�
p ea

ffiffi
�
p

h � 1
� �

� B
a
ffiffiffi
�
p e�a

ffiffi
�
p

h � 1
� �� �

: ð20Þ
2.3. 2-D solution

Zhang et al. (2010) expanded the Navier–Stokes equation to ac-
count for velocity variations in both the y- and z-directions. They
used a cell approach to divide the pillar array into two sections:
with and without pillars. The section without pillars is called sec-
tion A, and the section with pillars is called section B. The section
domains are shown in Fig. 2. Section A used the same solution as
a flat plate. Section B approximated the pillar surfaces as rectangu-
lar plates of height h and length d, then used the Navier–Stokes
equation to solve for the velocity profile. The authors have im-
proved this model by accounting for the actual area available for
flow in the pillar region as a function of x, and by changing the
boundary conditions in the section without pillars to account for
developing flow behavior.

Continuity is maintained by assuming a constant superficial
velocity throughout both sections. The pressure drops across sec-
tion A and section B are added together to determine the total
pressure drop. The full wick contains multiple cells, so we multiply
the individual cell pressure drops by the number of cells in a given
wick length L to determine the total pressure drop:

DPtotal ¼ ðDPA;cell þ DPB;cellÞ
L

sþ d

� �
: ð21Þ



Fig. 2. Top-down schematic of pillar array to illustrate sections used in proposed 2-
D model.
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The governing equation is

dP
dx
¼ l @2u

@y2 þ
@2u
@z2

 !
: ð22Þ

This requires a finite Fourier transform solution, as described in de-
tail by Deen (1998). The non-dimensional parameters are

�z ¼ z=h; �y ¼ y=l; �u ¼ u

� dP
dx

h2

2l

; a ¼ h=weff ; ð23Þ

where weff is the effective width of the channel available for flow. In
section A, weff = l, but in section B, weff varies between l and w as a
function of x. The z-direction boundary conditions are no-slip at
�z ¼ 0 and free shear at �z ¼ 1. The boundary conditions at �y ¼ 0
and �y ¼ 1 depend on whether we are considering section A or sec-
tion B. The boundary conditions will be zero shear stress in section
A and zero velocity (no-slip) in section B. They are represented
generically here as a boundary velocity condition �ub and will be fur-
ther defined in the following sections. Fig. 3 gives a visual depiction
of the mathematical domain.

The non-dimensional solution to Eq. (22) is

�u ¼
X1
n¼0

sinðkn�zÞ 4�ub � 4
k3

n

 !
sinh kn

a
�yþ sinh kn

a ð1� �yÞ
sinh kn

a

 !
þ 4

k3
n

( )
;

ð24Þ
Fig. 3. Finite Fourier transform domain for 2-D velocity solution.
where kn = (n + 1/2)p. The infinite summation was truncated at
either 20 or 100 terms, depending on the value of a. From this solu-
tion, the average dimensionless velocity �uavg arises from integrating
the velocity across the flow area and dividing by the total area. So,
the superficial dimensional velocity becomes

U ¼ �uavg
�h2

2l
dP
dx

 !
weff

l

� �
: ð25Þ
2.3.1. Section A
The pressure drop for section A depends on the boundary con-

ditions at �y ¼ 0 and �y ¼ 1. The boundaries are symmetric, but this
model also requires the velocity conditions at the boundary. One
approach is to assume fully developed flow so that the velocity
profile is uniform in the y-direction. This means that the flow
jumps immediately from no-slip on the cylinder wall to a fully
developed profile at the beginning of section A, which would result
in an upper bound estimate for the final permeability. The opposite
approach is to assume that the velocity remains zero along the en-
tire boundary, which would provide a lower bound estimate for the
final permeability. A third approach is to specify a velocity profile
at the boundary that falls between these two extremes. These sim-
plified approaches allow us to calculate the limiting cases of this
model as well as a midrange solution with flexible, analytical equa-
tions that clearly display the individual effects of x- and y-direction
pillar spacings. To create a generic equation for all three of these
cases, we first choose the shape of the boundary velocity profile
in the z-direction to match a fully developed flow profile, i.e. para-
bolic with a set velocity at the liquid surface, us. The boundary
velocity is

�ub ¼ �us 2�z� �z2	 

: ð26Þ

The value of �us dictates which approach is being used. For the first
case, setting �us = 1 creates a uniform velocity profile equal to fully
developed flow over a flat plate. Setting �us = 0 for the second case
maintains a zero velocity condition at the boundary. For the last case,
the surface velocity is given a finite value between 0 and 1. Fig. 4
shows the 3-D profile of �u (Eq. (24)) vs. �y and �z for the three cases.
The bottom profile uses an arbitrary value of �us = 0.2 to demonstrate
the general profile shape. In reality, the value of �us depends on x and
has been chosen to increase parabolically from zero at the cylinder
wall to some maximum value (�umax) at the midpoint between pillars
before returning to zero again at the next set of pillars. The three pos-
sible values for �us are summarized here:

�us ¼

1 Fully dev: velocity profile at boundary

0 Zero velocity at boundary

4�umaxð�x� �x2Þ Varying velocity profile at boundary

8>>><
>>>:

ð27Þ

The dimensionless value for �x goes from 0 to 1 across section A. �x ¼ 0
occurs at the trailing edge of the first set of pillars (x = d), and �x ¼ 1
occurs at the leading edge of the next set of pillars (x = s + d). The
maximum velocity �umax is reached midway between pillars and is a
function of S-spacing, such that pillars spaced further apart achieve
a higher velocity at the midpoint than pillars spaced closer together.
The dependence of �umax on S-spacing chosen for this model is

�umax ¼

0 for S=d < 4:5

�0:00238 S
d

	 
2 þ 0:119 S
d� 0:487 for 4:5 6 S=d 6 25

1 for S=d > 25

8>>><
>>>:

ð28Þ



Fig. 4. Dimensionless velocity profiles (Eq. (24)) for flow with three different y-
direction boundary conditions: us = 1 (top), us = 0 (center), us = 0.2 (bottom).
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The piece-wise function for �umax stems from COMSOL V4.3 simula-
tion results (COMSOL, Inc., Stockholm, Sweden), which will be dis-
cussed more thoroughly in the next section. COMSOL simulations
matched the solution �us = 0 most closely until S/d became greater
than �4.5. Above S/d � 4.5, comparisons of the model results with
COMSOL simulations indicated that the best match occured when
�umax increased parabolically with S/d. The maximum velocity should
reach 1 at large values of S/d, so as a first approximation we assume
that �umax = 0 at S/d = 4.5 and increases parabolically to �umax = 1 at an
arbitrarily large value of S/d = 25 (� = 0.9987). For section A, weff = l
and Eq. (25) becomes

U ¼ �uavg
�h2

2l
dPA;cell

dx
: ð29Þ

The fully developed flow case (�us = 1) leads to the standard equation
for laminar flow over a flat surface. Eq. (25) simplifies to

Uð�us¼1Þ ¼
�h2

3l
dPA;cell

dx
: ð30Þ

Assuming that dP/dx is constant, integrating from x = d to x = S gives
the pressure drop across section A for single cell. Scaling by the total
number of cells in an array produces
DPA;ð�us¼1Þ ¼
3l
h2

s
sþ d

� �
LU: ð31Þ

The assumption of zero velocity at the boundaries (�us = 0) makes
�uavg independent of x, so

DPA;ð�us¼0Þ ¼
2l
h2

1
�uavg

s
sþ d

� �
LU; where �us ¼ 0: ð32Þ

The last case of a varying boundary velocity makes �uavg a function of
x, since �us is a function of x. Therefore,

DPA;ð�us¼f ð�xÞÞ ¼
2l
h2

LU
sþ d

Z sþd

d

1
�uavg

dx; where �us ¼ f ð�xÞ: ð33Þ
2.3.2. Section B
Section B is modeled entirely by flow through an open rectan-

gular channel, which is Eq. (24) with �ub = 0 for no-slip boundary
conditions. The superficial velocity U is once again Eq. (25), where
the average velocity �uavg is found by integrating Eq. (24) with �ub set
to zero. The original model by Zhang et al. (2010) used a constant
area-averaged channel width:

weff ;Zhang ¼
ld� d2p=4

d
¼ l� dp

4
; ð34Þ

but in reality the width available for flow follows the shape of the
pillar surface and varies as function of x. As an improvement to
the model, weff now goes from l at the edge of section B to w at
the center, and then returns to l at the opposite edge. Using a polar
coordinate transformation:

weff ¼ l� d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=ðd=2ÞÞ2

q
; ð35Þ

where x goes from �d/2 to d/2. Recognizing that �uavg and weff are
both functions of x, integrating Eq. (25) from �d/2 to d/2 gives
the pressure drop for section B in a single cell. Scaling by the total
number of cells results in:

DPB ¼
2l
h2

l
sþ d

LU
Z d=2

�d=2

1
weff �uavg

� �
dx: ð36Þ
2.3.3. Total permeability
The overall permeability for the micropillar array is

Ktotal ¼
Ul

DPtotal=L
; ð37Þ

and DPtotal is equal to the sum of DPA and DPB. Remembering that
K⁄ = K/d2, the total dimensionless permeabilities are presented be-
low. Eq. (38) uses the fully-developed flow assumption (�us = 1) for
section A, Eq. (39) uses a zero boundary velocity (�us = 0), and Eq.
(40) uses a varying boundary velocity profile ð�us ¼ f ð�xÞÞ.

K�total;ð�us¼1Þ ¼ 3
d
h

� �2 s
sþ d

þ

R d
2
�d
2

1
�uavg weff

dx

1
2

h
d

	 
2 sþd
l

2
64

3
75
�1

ð38Þ

K�total;ð�us¼0Þ ¼
2s

sþ d
d
h

� �2 1
�uavg
þ

R d
2
�d
2

1
�uavg weff

dx

1
2

h
d

	 
2 sþd
l

2
64

3
75
�1

ð39Þ

K�total;ð�us¼f ð�xÞÞ ¼
2

sþ d
d
h

� �2 Z sþd

d

1
�uavg

dxþ

R d
2
�d
2

1
�uavg weff

dx

1
2

h
d

	 
2 sþd
l

2
64

3
75
�1

ð40Þ

Similar to Eq. (15), Eqs. (38)–(40) are written in terms of separate x-
and y-direction pillar spacings. This study concentrates on square
arrays where the x- and y- spacings are equal and briefly explores
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rectangular arrays. The proposed model provides a basic and
straightforward tool that can be utilized to study rectangular pillar
arrangements in more depth in the future.
Fig. 6. 3-D COMSOL velocity profile through micropillar array to demonstrate
computation domain. h = 90 lm, d = 30 lm, l = S = 150 lm.
2.4. Numerical simulation

Numerical simulations allow for 3-D velocity profile modeling
and provide a unique benefit due to their ability to specify a peri-
odic boundary condition instead of a velocity boundary condition.
Ranjan et al. (2012) recently used FLUENT

�
to calculate permeabil-

ities of cylindrical pillar arrays as a function of porosity. Similarly,
Srivastava et al. (2010) used COMSOL V3.5a (COMSOL, Inc., Stock-
holm, Sweden) to determine the dependence of a dimensionless
fluid flow rate through square pillar arrays on two dimensionless
geometric parameters: h/w and w/d. The simulation used a unit cell
approach, and the boundary conditions were no-slip on solid sur-
faces, pressure constraints on upstream and downstream cell faces,
and symmetric profiles on all other faces. The resulting dimension-
less flow rate per unit width q̂ is:

q̂ ¼ 3lq
dP
dx

	 

ld2 ¼

1
10

� �
h
w

� �1:17 w
d

� �2:5
; ð41Þ

where q is the dimensional flow rate per unit width. Eq. (41) is
accurate to within 10% for 5 lm 6 d 6 100 lm, 1 � w/d � 10, and
1 < h/w < 10. Rearranging Eq. (41) to solve for the average
dimensionless velocity and thus the dimensionless permeability
as defined by Eq. (1) gives

K�S ¼
1

30
l
h

� �
h
w

� �1:17 w
d

� �2:5
: ð42Þ

We performed our own COMSOL simulations both to explore ranges
of h/w and w/d above 10 and to validate Eq. (42). The bottom sur-
face and pillar walls were specified no-slip. The top surface had a
symmetry boundary condition, and the surfaces at y = 0 and y = l
had periodic flow conditions. Instead of using periodic conditions
for the inlet and oulet, laminar flow inlet and outlet pressures were
specified. To eliminate entrance and exit effects, we extended the
simulation from a single cell to an array ten cells long and one cell
wide. The resulting superficial velocity and pressure distributions
were measured and used to calculated the Darcy permeability for
each cell. The permeabilities from the center cells were averaged
to give the final permeability with 61% uncertainty on the average.
Fig. 5 shows a schematic of the simulation domain and correspond-
ing boundary conditions for a single cell, and Fig. 6 shows a 3-D
rendering of an example velocity profile for an entire array.
Fig. 5. Computation domain (dashed line) and boundary conditions used in the numerica
are side and top views of a single cell, respectively.
2.5. Model comparisons

The dimensionless permeabilities of the fluid flow models just
described are summarized in Table 1 for square pillar arrange-
ments in terms of two dimensionless geometric groups: /1 = h/d
and /2 = l/d. The last seven equations in Table 1 model actual pillar
arrays, and Fig. 7 shows four of these dimensionless permeabilities
vs. � (Eq. (6)) for two ratios of h/d. Numerical simulation results
from Srivastava et al. (2010) are not shown because of their limited
applicability range; however, the COMSOL results obtained for this
study are included as K�C . The three solutions of the author’s model
are almost identical at low values of porosity, so only the varying
boundary velocity result is shown in Fig. 7.

At low porosities, the true system follows the lubrication solu-
tion for a cylinder bank (Gebart, 1992). The permeability proposed
by Yazdchi et al. (2011) recognizes this transition and matches the
solution by Gebart (1992) at low porosities. Although the model
developed by the present authors does not follow an exact lubrica-
tion solution, it accounts for the varying flow area caused by the
curved pillar surfaces. Consequently, the authors’ solution matches
the other models well at low porosities.

For the applications of interest here, h, d, and w vary between
5 lm and 200 lm. The majority of pillar arrays within those
dimensions have � > 0.9. Therefore, Fig. 8 plots permeabilities
against the more representative scale of l/d. COMSOL results from
Srivastava et al. (2010) are plotted only where the model is
applicable. The analytical permeabilities of the pillar array with
h/d = 0.25 and h/d = 0.5 approach that of a flat plate at high poros-
ities, which is expected since the pillars are short and far apart. The
authors’ model has an advantage over Tamayol and Bahrami
(2009) and the Brinkman model in that it is the only analytical
model that takes into account the 2-D velocity effects of the flat
l model to simulate fluid flow through a micropillar array. Left and right schematics



Table 1
Dimensionless permeabilities in terms of /1 = h/d and /2 = l/d for different fluid flow models through micropillar arrays.

Author K⁄ Comments
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1 1� p
4 /�2

2

� �
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9p
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Fig. 7. Dimensionless permeability vs. 2-D porosity for a square micropillar array
with h/d = 0.5 (top) and 5 (bottom).
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bottom in the pillar section. This difference is not critical at high
h/d ratios, where the flat bottom surface effects are small
compared to the pillar surface effects. However, at low h/d, the flat
bottom has a significant effect on the overall permeability, as seen
in Fig. 8 for h/d = 0.25 and h/d = 0.5. Thus neglecting the 2-D effects
of the velocity profile at the transition between the pillar wall and
flat bottom is a potential reason that the other analytical models
overestimate the permeability for short pillar geometries. The
COMSOL results remain consistently below the value for a flat
plate, even at high porosities. Further study of the COMSOL veloc-
ity profile for h/d = 0.5 revealed that at high l/d ratios, the flow rate
becomes high and leads to developing flow conditions in the pillar
regions. This produces shear rates higher than predicted by the
authors’ model. The numerical simulations reflect intricate
developing effects, and the authors’ model attempts to accommo-
date those conditions with a variable boundary velocity. At low
h/d, the authors’ model performs the best out of all the models
presented.

As h/d increases, the pillar height becomes more prominent and
the permeabilities appear like those of a cylinder bank. The values
of K�Y ;total; K�B, and K�S are numerically similar for all ratios of h/d, but
K�T;total is consistently higher. The Brinkman model matches previ-
ous simulation results by Srivastava et al. (2010), but COMSOL re-
sults from this study indicate that the Brinkman model deviates at
high l/d. The long-range permeability behavior at l/d > 15 (not
shown) is that all of the models approach the fully developed flow
assumption (uniform velocity). This is to be expected, considering
that the pillars are far apart and so most of section A is fully devel-
oped flow.

COMSOL and the authors’ models represent the micropillar sys-
tem most realistically because they account for the cylindrical and
flat surfaces of a pillar array simultaneously instead of relying on
weighting methods or approximate geometries. The solutions of
the current authors’ model for us = 1 and us = 0 (Eqs. (38) and
(39)) delineate the upper and lower bounds of permeability for
the model. These solutions are not shown because the varying
boundary velocity solution (Eq. (40)) is a more accurate midrange
solution between the two. The boundary velocity solution matches
numerical results well for h/d = 5 and with acceptable accuracy for
h/d = 2. The authors’ varying boundary velocity model thus
captures the important physics of fluid flow in micropillar arrays.



Fig. 8. Dimensionless permeability vs. /2 = l/d for a square micropillar array with
h/d = 0.25, 0.5, 2, and 5.
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Interestingly, the accuracy of the analytical models depends on
h/d. Based on additional results for h/d = 10 (not shown), the Brink-
man model becomes more accurate (as compared to COMSOL
results) as h/d increases, whereas the varying boundary velocity
hits a maximum accuracy around h/d = 5. There is clearly a rela-
tionship between permeability and height that is not being ac-
counted for in either model. Numerical results have indicated
that the real flow involves developing velocity profiles and a com-
plex dependence on pillar height beyond the capabilities of the
current models. For exact solutions of square pillar arrangements,
the authors’ model provides the robustness and accuracy needed
for design work up to h/d = 5. At the higher flowrates observed at
h/d > 5, the authors’ model does not capture all of the flow patterns
observed numerically. The Brinkman equation overestimates the
results at low h/d and is better suited for h/d > 5, where the flat
bottom effects are small compared to the pillar surface effects.
Therefore, we can create a hybrid permeability that uses the vary-
ing boundary velocity model for h/d 6 5 and the Brinkman model
for h/d > 5.

The authors’ model has another key area of strength. The Brink-
man equation is less ideal for the exploration of unconventional
geometries because it requires a cylinder bank permeability term,
and Tamayol and Bahrami (2009) are among the few who have ex-
tended their analyses past homogeneous square or hexagonal
banks. COMSOL simulations can be adapted to different geometries
once the user has acquired sufficient software expertise, but the
current authors’ solution offers an analytical model capable of
handling alternate geometries easily and quickly. So, alternate
geometries can be modeled either with COMSOL simulations, the
Brinkman equation using the permeability of Tamayol and
Bahrami (2009) as the cylinder bank permeability, or the authors’
model. Fig. 9 shows the permeability of pillar arrays arranged in
rectangular configurations, where S/d is constant but l/d is varied.
The Brinkman equation result K�B now uses the cylinder bank
permeability from Tamayol and Bahrami (2009) instead of Yazdchi
et al. (2011).

The authors’ solution matches closely to COMSOL results for
S/d 6 3. The Brinkman equation provides less accurate results,
potentially stemming from the fact that the solution proposed by
Tamayol and Bahrami (2009) uses different approximations for
the velocity profile in the cylinder banks. Small S/d ratios are
advantageous to heat pipes because they create high capillary
pressures, which will be discussed in the next section. Therefore,
the authors’ model is clearly useful for predicting the permeabili-
ties of pillar arrays in rectangular geometries and requires less
time and expertise than numerical simulations.
3. Capillary pressure gradient

Fluid flow in capillary wicking devices is a competition between
the driving capillary pressure gradient and viscous losses. The pre-
vious section explored different models for the viscous losses in a
micropillar array. However, the appropriate capillary pressure gra-
dient depends upon the application of the wick. Many experimen-
talists test the wicking capabilities of new materials by performing
a rate-of-rise experiment, which tracks the propagation of a fluid
front through an unwetted material (Srivastava et al., 2010; Xiao
et al., 2010; Nam et al., 2010). The pressure gradient for these sys-
tems depends on the surface energy difference between wet and
dry portions of the wick. In contrast, heat pipe wicks are continu-
ously wetted. This section presents the capillary pressure gradient
for a micropillar array used as a heat pipe wick.

The capillary pressure difference over a vapor–liquid interface
is (Peterson, 1994)



Fig. 9. Dimensionless permeability vs. /2 = l/d for a rectangular micropillar array
with h/d = 2, S/d = 1.1 (top left), h/d = 2, S/d = 3 (top right), h/d = 5, S/d = 1.1 (bottom
left), and h/d = 5, S/d = 3 (bottom right). K�B uses the cylinder bank permeability from
Tamayol and Bahrami (2009).
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Pv � Pl ¼ r 1
R1
þ 1

R2

� �
; ð43Þ
where Pv is the vapor pressure, Pl is the liquid pressure, r is the li-
quid/vapor surface tension, and R1 and R2 are the principle radii of
curvature of the liquid meniscus. The principle radii of curvature are
assumed to be equal for square pillar arrays due to geometric sym-
metry, so

Pv � P1 ¼
2r
R
: ð44Þ

In a heat pipe, the difference between the capillary pressures in the
evaporator and condenser sections drives fluid flow through the
wick:

DPcap ¼
2r

Revap
� 2r

Rcond
: ð45Þ

Vaporization in the evaporator causes the liquid meniscus to re-
cede, while condensation submerges the wick in the condenser sec-
tion and causes Rcond ?1. The principle radius in the evaporator is
related to the contact angle of the liquid with the wicking surface, h,
and the effective radius of the wick pores, reff (Peterson, 1994).
Therefore, the capillary pressure becomes

DPcap ¼
2r cos h
reff ;evap

: ð46Þ

The contact angle must be low enough for the liquid to wet the sur-
face of the pillars (a threshold explored by Priest et al. (2012)), but
maximum fluid flow through the wick is achieved when the liquid
completely wets the wick (h = 0). For wire screens, the effective ra-
dius of curvature is 0.5(w + dw), where w is the wire spacing and dw

is the wire diameter. However, Nam et al. (2010) tested hexagonal
pillar arrays and found that the effective pore radius did not change
significantly with pillar diameter, but instead changed with pillar
spacing. This indicates that the correct effective radius for square
pillar arrays is 0.5w, not 0.5(w + d). Thus, a first approximation for
the maximum driving capillary pressure for a micropillar wick in
a heat pipe is

DPcap;max ¼
4r
w
: ð47Þ

For non-symmetric pillar geometries, the capillary pressure can be
expressed in terms of w and s:

DPcap;max ¼ r 2
s
þ 2

w

� �
: ð48Þ

One point to note is that this equation assumes that the liquid
contact line is pinned at the top pillar edge, while in reality the
curvature will be less severe. The extent to which Eq. (48) overesti-
mates the capillary pressure could be known through a more
rigorous surface energy analysis, but that is beyond the scope of this
project.

4. Flow rate calculations

The cooling capacity of heat pipes is related to the mass flow
rate of liquid through the internal wick, and we are interested in
comparing wicks on the basis of their best-case scenario even
though heat pipes do not always operate at full capacity. The cap-
illary pressure can be non-dimensionalized as follows:

DP�cap ¼
DPcap;max d

r
: ð49Þ

To explore the relationship between pillar geometry and maximum
flow rate, the dimensionless velocity is:

U� ¼ K�DP�cap: ð50Þ

The mass flow rate through the wick can easily be derived from the
velocity by multiplying by cross-sectional area and fluid density:

_m ¼ U�
qr
l

Acd
L

� �
; ð51Þ
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where _m is the dimensional mass flow rate, L is the macroscopic
wick length, Ac = hW is the superficial cross-sectional wick area,
and q is the fluid density. U⁄ is a function of h/d and l/d alone, so
a parameter sweep can determine where the maximum flow rate
occurs. The results are shown in Figs. 10 and 11. Fig. 10 is a contour
plot of U⁄ vs. h/d and l/d, and Fig. 11 shows U⁄ vs. l/d for three dif-
ferent h/d ratios. The top right contour plot is a hybrid between
the authors’ model and the Brinkman equation. The authors’ model
(Eq. (40)) is used for h/d 6 5 due to its superior accuracy at low pil-
lar heights, and the Brinkman equation is used for h/d > 5. The con-
tour plot lines corresponding to COMSOL results U�C

	 

are not

completely smooth because they are generated from a set of 198
evenly spaced combinations of h/d and l/d.

Fig. 11 shows that the authors’ model kinks at the transition
from a zero boundary velocity to a finite boundary profile, as indi-
cated in Eq. (28), but overall the model matches well to numerical
results for h/d 6 5. All of the models exhibit the same trend: for a
given h/d, the dimensionless mass flow rate initially increases with
pillar spacing due to decreased viscous losses. However, the
simultaneous decrease in DPcap,max causes the flow rate to reach
a maximum and then decrease with continued pillar spacing
increases. Therefore, there is an optimal l/d at a given h/d; this
optimum occurs at the inflection point of each contour line in
Fig. 10. The relationship between h/d and the inflection point l/d
is approximately linear for each model, and the equations are given
in Table 2. The R2 values represent the coefficient of determination
for each linear fit based on standard linear regression techniques.
Fig. 10. Contour plot of dimensionless velocity vs. h/d and l/d for different
permeability models. COMSOL results – U�C – top left, a hybrid between Eq. (40)
and U�B – top right, Brinkman equation – U�B – bottom left, and varying boundary
velocity – U�total;ð�us¼f ð�xÞÞ – bottom right.

Fig. 11. Dimensionless mass flow rate vs. l/d for different permeability models with
h/d = 0.5, 2, and 5.

Table 2
Curve fit of inflection point l/d to h/d for several permeability models.

Model Equation R2

COMSOL simulations ðl=dÞinf ¼ 1:526 h
d

	 

þ 1:907 0.996

Xiao et al. (2010) ðl=dÞinf ¼ 1:488 h
d

	 

þ 2:311 0.998

Boundary Vel. (h/d < 5) ðl=dÞinf ¼ 1:720 h
d

	 

þ 1:272 0.991

Boundary Vel. (h/d > 5) ðl=dÞinf ¼ 0:974 h
d

	 

þ 4:985 0.990
The real strength of the authors’ model is for rectangular pillar
geometries, particularly at low S/d. Fig. 12 shows these results by
plotting dimensionless velocity for both square and rectangular
pillar geometries on a logarithmic scale. The authors’ model fits



Fig. 12. Dimensionless velocity vs. /2 = l/d for both square and rectangular
micropillar arrays with h/d = 2 (top) and h/d = 5 (bottom).

Table 3
Physical system parameters used to calculate mass flow rates.

Parameter Value Description

r 0.066 N/m Liquid–vapor surface tension
q 983.3 kg/m3 Liquid density
l 0.463 � 10�3 Ns/m2 Liquid viscosity
hvap 2260 J/g Heat of vaporization
L 0.03 m Macroscopic wick length
W 0.01 m Macroscopic wick width
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well to numerical results. In addition, rectangular arrays demon-
strate potential for larger flow rates than square arrays. Eq. (48)
shows that the capillary pressure has the same theoretical depen-
dence on both S/d and l/d. As permeability increases with l/d, the
capillary pressure also stays high due to the fact that S/d is con-
stant. So, Fig. 12 indicates that micropillar arrays could be designed
to benefit from increased permeability without sacrificing capillary
pressure. With S/d = 1.1, the dimensionless velocity is at least an
order of magnitude higher than a square array for a given l/d.
The velocity drops dramatically when S/d increases to 3 due to
the inverse dependence of capillary pressure on spacing. This sug-
gests that the largest benefits of rectangular arrays are realized at
small S/d. More study is needed on the exact dependence of the
capillary pressure on individual l � and S � spacings to ensure that
the surface radii of curvature within rectangular pillar configura-
tions can still be represented by Eq. (48).

For both square and rectangular arrangements, there is not an
optimum h/d at which the flow rate peaks for a given l/d value. In-
stead, the contour plots indicate that the flow rate just continu-
ously increases as h/d increases, so that the global maximum
flow rate occurs at the highest h/d possible. This is mathematically
true since the flow rate reflects the balance of the flat plate and cyl-
inder bank aspects of the array. When the pillars are short or
spread apart (low h/d or high l/d), the array behaves more like a flat
plate, so flow rate increases with h/d. Unfortunately, the benefit of
increasing h/d is accompanied by the array behaving more like a
cylinder bank. Under those conditions, the flow rate increases pri-
marily with pillar spacing until the inflection point is reached. Past
the inflection point, the array begins to look like a flat plate again
so flow rate once again increases wih h/d. This leads to the behav-
ior in Fig. 10, where it seems beneficial to increase h/d and l/d infi-
nitely. There are two reasons that this conclusion is not realistic.
First, the equation for capillary pressure (Eq. (43)) loses validity
when the liquid–vapor interface is no longer dictated by surface
tension effects. Fig. 10 shows that the contour inflections will
eventually move into an l/d region where the liquid between the
pillars does not actually create a capillary pressure because the pil-
lar spacing exceeds the capillary length. The capillary length is the
point at which gravity becomes the dominant force on the fluid
meniscus shape instead of surface tension. For the proposed mod-
els to apply, the surface tension effects should be at least an order
of magnitude larger than the hydrostatic effects so that h and l are
both <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1r=qg

p
, or Bo = (qg h l/r) < 0.1, where Bo is the Bond

number. Second, manufacturing constraints create limits on pillar
dimensions irrespective of capillary pressure. Pillars with small as-
pect ratios or large heights are difficult to create, and careful con-
sideration as to their stability is required (Chandra and Yang,
2010), although nano and micromanufacturing advances continue
to push modern capability limits. Taking these two limiting factors
into account, the global maximum mass flow rate for micropillar
heat pipe wicks occurs at the highest h/d allowed by manufactur-
ing that still results in a Bond number less than 0.1 at the corre-
sponding optimum l/d.

5. Cooling capacity predictions for square arrays

In heat pipes, the purpose of increasing the fluid flow rate
through the internal wick is to raise the maximum heat transfer
capacity of the pipe (i.e. the capillary limit). This section deter-
mines the pillar dimensions necessary to achieve 1000 W/cm2 of
maximum cooling capacity. Only square arrays are considered
since they are the main focus of this study. The model used is a hy-
brid between the authors’ model and the Brinkman equation. Eq.
(40) was used for h/d 6 5, and the Brinkman model using the per-
meability by Yazdchi et al. (2011) was used for h/d > 5. Wang and
Bar-Cohen (2007) found that local hot spots on microprocessors
typically produced heat fluxes of 680 W/cm2. In addition, Tucker-
man and Pease (1981) created a compact, water-cooled heat sink
capable of dissipating 790 W/cm2 but predicted that 1000 W/cm2

should be possible. Therefore, 1000 W/cm2 was the target cooling
capacity used in this study. The cooling capacity of a wick is given
by: Q ¼ _mhvap, where Q is the total heat transfer and hvap is the heat
of vaporization of the working fluid. One of the three pillar dimen-
sions must be specified to calculate _m according to Eq. (50). The
authors evaluated three test cases where d = 10, 50, and 100 lm.
The model fluid was water, and Table 3 gives the physical param-
eters used in the analysis. The macroscopic wick dimension was
1 � 3 cm, and the evaporator surface area was 1 cm2.

Fig. 13 shows the contour plots of _m vs. l and h for the three
wicks. The dotted line in Fig. 13 represents the mass flow rate
needed to transfer 1000 W/cm2 of heat, assuming no environmental
losses. All three pillar diameters can achieve 1000 W/cm2 of cool-
ing without exceeding the capillary length, since lcap = 2600 lm
for water. However, the pillar height is a more substantial issue.



Fig. 13. Mass flow rate in g/h vs. l and h for d = 10 lm (left), 50 lm (center), and 100 lm (right). Dotted line indicates the mass flow rate needed to dissipate 1000 W/cm2 via
fluid vaporization.
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Pillars with 10 lm diameters require high aspect ratios to meet the
desired goal, which decreases the mechanical stability of the pil-
lars. However, 100 lm-diameter pillars require large absolute val-
ues for pillar height, which increases manufacturing difficulty.
Therefore, manufacturing considerations suggest that midrange
diameters are the most desirable for micropillar wicks.

Fig. 13 in combination with Fig. 10 creates a powerful design
tool that maps out the effects of h, d, and l on the maximum mass
flow rate through micropillar wicks. Once one of the three geomet-
ric parameters is fixed based on design criteria, Fig. 13 provides a
convenient and fast method to tune the remaining two parameters
to produce the desired maximum amount of heat dissipation.
Fig. 13 is specific to the experimental parameters given in Table 3
but is derived from Fig. 10, which can be used as a foundation for
other test cases.

The wick length also plays a significant role in wick perfor-
mance. The capillary limit decreases as the wick lengthens due to
increased viscous resistance without corresponding gains in
capillary pressure. Therefore, the benefits of micropillar wicks are
best realized at short heat pipe lengths. Recent interest in on-chip
cooling technologies provide a potential application, where high
spot cooling capacity is a necessity but the wicks only need to be
long enough to reach the heat sink (Wang and Bar-Cohen, 2007).
6. Conclusions

Fluid flow through micropillar arrays has shown promise in a
variety of technological fields, and the permeability of these arrays
is a key parameter in their design and application. In this paper we
evaluated several permeability models to identify a robust model
for optimizing pillar dimensions for a given application. Numerical
simulations were performed to provide the most complete
solutions for all pillar configurations, but the simulation process
required time and careful attention to ensure that the results were
accurate. Analytically, models that combined cylinder bank and flat
plate permeabilities exhibited the expected behavior with accept-
able numerical accuracy. The Brinkman equation matched numer-
ical simulations most closely for pillars arranged in square arrays
with high h/d. Finally, a 2-D velocity solution with varying bound-
ary conditions matched well to respected models at low porosities;
at high porosities this approach provided comparable or superior
results up to h/d = 5. Therefore, a hybrid model was created to
combine the strengths of both models by using the 2-D velocity
solution for h/d 6 5 and the Brinkman equation for h/d > 5. To
explore alternative pillar arrangements, the Brinkman equation
would require the permeability of the corresponding cylinder
bank, for which there is at least one model available (Tamayol
and Bahrami, 2009). However, the current authors’ model is easily
adapted to rectangular pillar arrangements and accounts for the
unique velocity profile at the intersection of bottom surface and
the pillar wall, making it a viable alternative to numerical simula-
tions. Indeed, several results for rectangular arrays were presented
and indicated that the authors’ model achieved the closest match
to simulations out of all the available models at low pillar spacings.

We also optimized micropillar wick dimensions for maximum
fluid flow rate in heat pipe applications. The capillary pressure
for a heat pipe applied to the micropillar array gave the insight that
there is an optimal l/d for a given h/d based on the trade-off be-
tween viscous losses and capillary pressure that is not immediately
apparent simply from pillar array permeability calculations. The
figure of dimensionless flow rate vs. l/d and h/d given in this paper
presents a convenient design tool to identify the combinations of
pillar dimensions that give a desired maximum mass flow rate,
and consequently a desired cooling capacity. In addition, prelimin-
ary results for alternative pillar configurations suggested that rect-
angular arrays could produce flow rates up to an order of
magnitude higher than square arrays. The equation used to model
the capillary pressure for rectangular arrays would need to be fur-
ther improved to verify these results. Finally, three hypothetical
test cases for wicks with d = 10, 50, and 100 lm indicated that
1000 W/cm2 of maximum cooling capacity is achievable by all
three diameters, but manufacturing capabilities suggest that
midrange diameters are the most realistic option.
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